Green's Function Approach to Ab Initio Band Structures of HF and HCI Chains

CHRISTIAN BUTH*, BEATE PAULUS, UWE BIRKENHEUER, PETER FULDE Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Straße 38, 01187 Dresden, Germany

MARTIN ALBRECHT

Theoretische Chemie, Universität Siegen, 57068 Siegen, Germany

Local approaches to electron correlation in atoms, molecules and solids are already very old [1]. Meanwhile, correlated ground state wave functions and energies of solids and large molecules can be obtained routinely [2] by employing Stoll's incremental scheme [3] which is a simple and robust linear scaling method that can be used in conjunction with almost any quantum chemical correlation method.

Several incremental schemes, e.g. the effective Hamiltonian approach [4], for excited states in solids have been formulated so far to establish a long sought-after method which allows to calculate correlated band structures of solids without relying on density functional theory. Another recent approach uses many-body Green's functions [5].

We propose a new Green's function approach to correlated band structures. It it based on a reformulation of the well-established algebraic diagrammatic construction scheme for localized crystal orbitals (CO-ADC). In this scheme, the band structure is obtained directly by diagonalizing a suitable matrix which incorporates all correlation effects.

We use the incremental scheme to study the ground state of the weakly bound $(HF)_{\infty}$ and $(HCl)_{\infty}$ chains. The bonding in $(HCl)_{\infty}$ is appreciably larger than it is in $(HF)_{\infty}$ leading to more delocalized orbitals and thus to a slower decay of the individual increments. Band structure calculations for $(HF)_{\infty}$ and $(HCl)_{\infty}$ are in progress.

References

- [1] G. Stollhoff and P. Fulde, Z. Phys. B **26** 251 (1977)
- [2] B. Paulus, Chem. Phys. Lett. **371** 7 (2003); P. Fulde, Adv. Phys. **51** 909 (2002)
- [3] H. Stoll, Chem. Phys. Lett. **191** 548 (1992)
- [4] J. Gräfenstein, H. Stoll, and P. Fulde, Chem. Phys. Lett. 215 611 (1993)
- [5] M. Albrecht and J.-I. Igarashi, J. Phys. Soc. Jpn. **70** 1035 (2001)

^{*}Correspondence to cbuth@mpipks-dresden.mpg.de