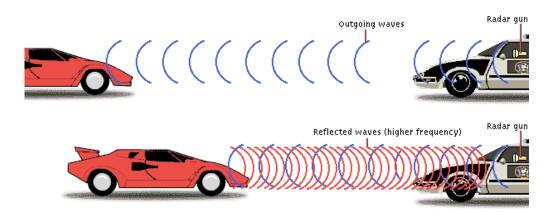


Lecture 41
Diffraction 2
04/29/2009





Review

- Interference only for coherent light, i.e., with a phase relationship that is time independent
- Intensity in double-slit interference:

$$I = 4I_0 \cos^2 \frac{1}{2} \phi$$

$$I = 4I_0 \cos^2 \frac{1}{2} \phi$$

$$\phi = \frac{2\pi d}{\lambda} \sin \theta$$

• Use Huygens' Principle to find positions of diffraction minima of a single slit by subdividing the aperture

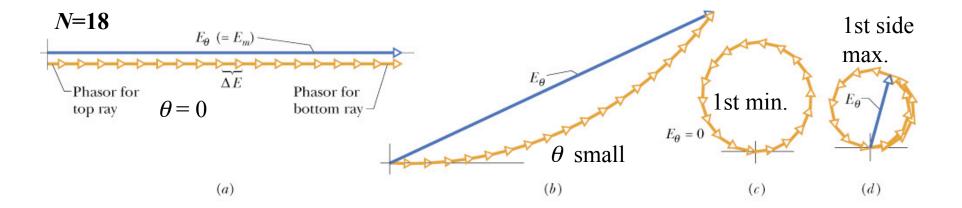
 $a \sin \theta = m\lambda$, for m = 1, 2, 3... (minima-dark fringes)

Intensity in Single-Slit Diffraction, Qualitatively

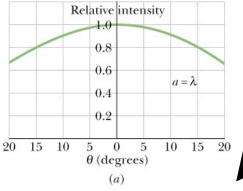
To obtain the locations of the minima, the slit was equally divided into N zones, each with width Δx . Each zone acts as a source of Huygens wavelets. Now these zones can be superimposed at the screen to obtain the intensity as a function of θ , the angle to the central axis.

To find the net electric field E_{θ} (intensity αE_{θ}^2) at point P on the screen, we need the phase relationships among the wavelets arriving from different zones:

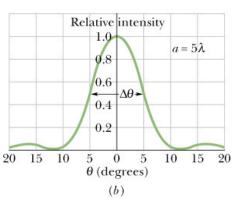
$$\begin{pmatrix} \text{phase} \\ \text{difference} \end{pmatrix} = \left(\frac{2\pi}{\lambda}\right) \begin{pmatrix} \text{path length} \\ \text{difference} \end{pmatrix} \qquad \Delta \phi = \left(\frac{2\pi}{\lambda}\right) (\Delta x \sin \theta)$$

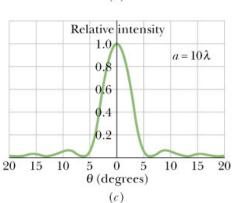


Intensity in Single-Slit Diffraction, Quantitatively



Here we will show that the intensity at the screen due to a single slit is:





$$I(\theta) = I_m \left(\frac{\sin \alpha}{\alpha}\right)^2 \qquad (36-5)$$

where
$$\alpha = \frac{1}{2}\phi = \frac{\pi a}{\lambda}\sin\theta$$
 (36-6)

In Eq. 36-5, minima occur when:

$$\alpha = m\pi$$
, for $m = 1, 2, 3...$

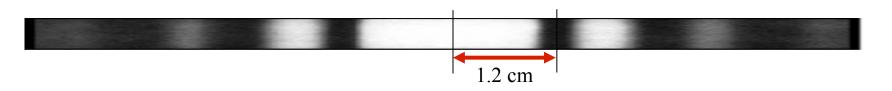
If we put this into Eq. 36-6 we find:

$$m\pi = \frac{\pi a}{\lambda} \sin \theta$$
, for $m = 1, 2, 3...$

or
$$a \sin \theta = m\lambda$$
, for $m = 1, 2, 3...$

(minima-dark fringes)

Diffraction of a laser through a slit



Light from a helium-neon laser ($\lambda = 633$ nm) passes through a narrow slit and is seen on a screen 2.0 m behind the slit. The first minimum of the diffraction pattern is observed to be located 1.2 cm from the central maximum.

How wide is the slit?

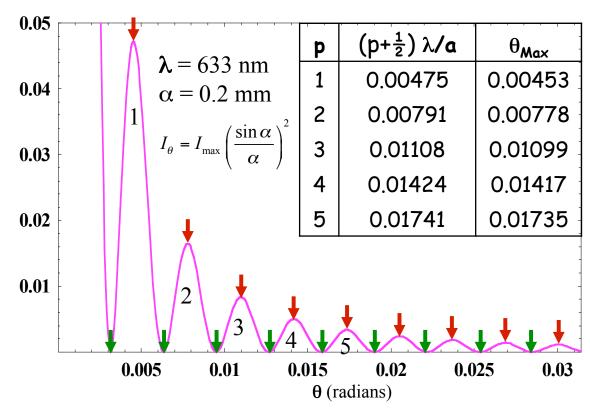
$$\theta_1 = \frac{y_1}{L} = \frac{(0.012 \text{ m})}{(2.00 \text{ m})} = 0.0060 \text{ rad}$$

$$a = \frac{\lambda}{\sin \theta_1} \approx \frac{\lambda}{\theta_1} = \frac{(6.33 \times 10^{-7} \text{ m})}{(6.00 \times 10^{-3} \text{ rad})} = 1.06 \times 10^{-4} \text{ m} = 0.106 \text{ mm}$$

Angles of the Secondary Maxima

The diffraction minima are *precisely* at the angles where $\sin \theta = p \lambda/a$ and $\alpha = p\pi$ (so that $\sin \alpha = 0$).

However, the diffraction maxima are *not quite* at the angles where $\sin \theta = (p+\frac{1}{2}) \lambda/a$ and $\alpha = (p+\frac{1}{2})\pi$ (so that $|\sin \alpha|=1$).



To find the maxima, one must look *near* $\sin \theta = (p+\frac{1}{2}) \lambda/a$, for places where the slope of the diffraction pattern goes to zero, i.e., where $d[(\sin \alpha/\alpha)^2]/d\theta = 0$. This is a transcendental equation that must be solved numerically. The table gives the θ_{Max} solutions. Note that $\theta_{Max} < (p+\frac{1}{2}) \lambda/a$.

Diffraction by a Circular Aperture

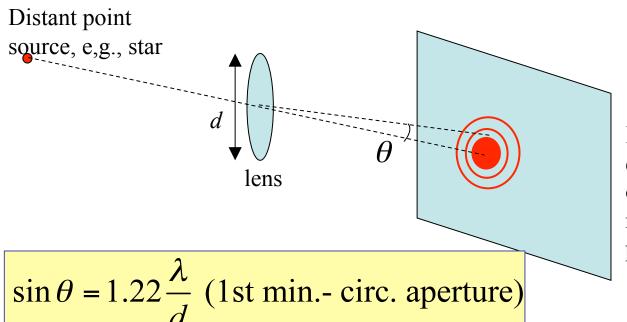
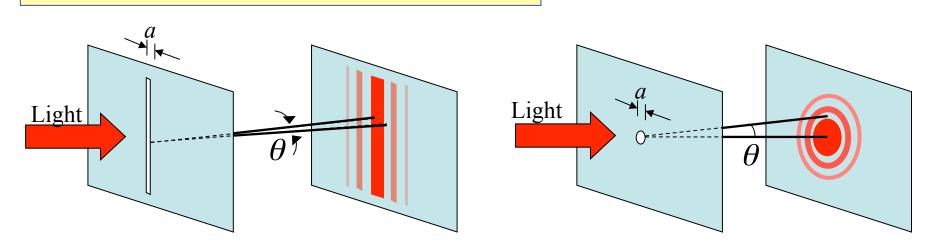
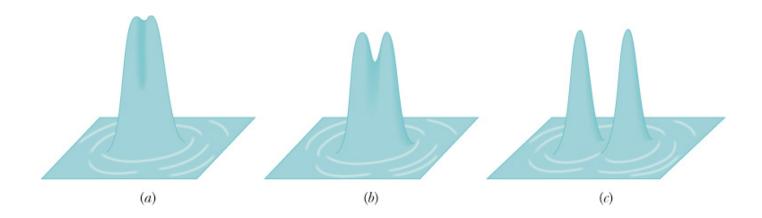


Image is not a point, as expected from geometrical optics! Diffraction is responsible for this image pattern.



Resolvability

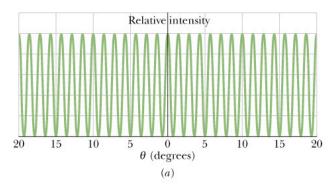
Rayleigh's Criterion: Two point sources are barely resolvable if their angular separation θ_R results in the central maximum of the diffraction pattern of one source's image centered on the first minimum of the diffraction pattern of the other source's image



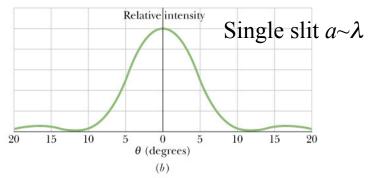
$$\theta_{\rm R} = \sin^{-1} \left(1.22 \frac{\lambda}{d} \right)^{\theta_{\rm R} \text{ small}} = 1.22 \frac{\lambda}{d}$$
 (Rayleigh's criterion)

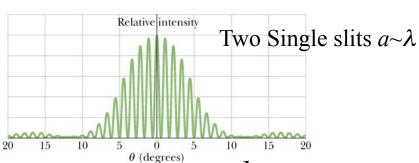
Diffraction by a Double Slit

In the double-slit experiment, we assumed that the slit width $a << \lambda$. What if this is not the case?



Two vanishingly narrow slits $a << \lambda$





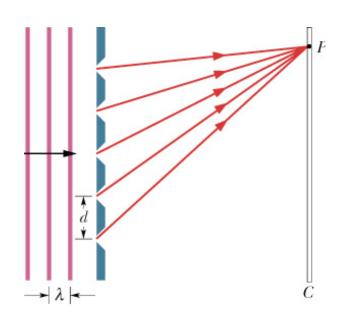
$$I(\theta) = I_m \left(\cos^2 \beta\right) \left(\frac{\sin \alpha}{\alpha}\right)^2$$
 (double slit)

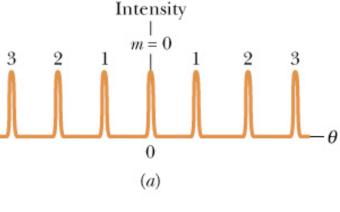
$$\beta = \frac{\pi a}{\lambda} \sin \theta$$

$$\alpha = \frac{\pi a}{\lambda} \sin \theta$$

Diffraction Gratings

A device with *N* slits (rulings) can be used to manipulate light, such as separate different wavelengths of light that are contained in a single beam. How does a diffraction grating affect monochromatic light?



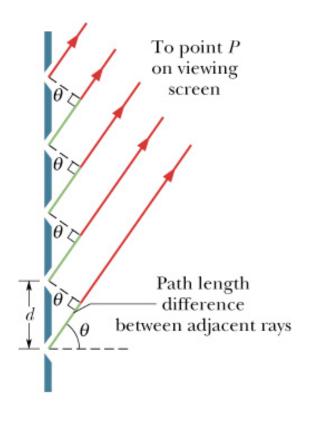


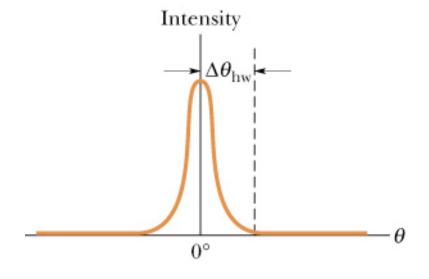
$$3 \quad 2 \quad 1 \quad m = 0 \quad 1 \quad 2 \quad 3$$
(b)

 $d \sin \theta = m\lambda$ for m = 0, 1, 2... (maxima-lines)

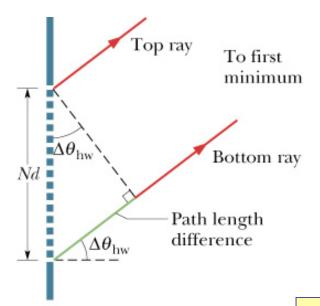
Width of Lines

The ability of the diffraction grating to resolve (separate) different wavelengths depends on the width of the lines (maxima).





Width of Lines, cont'd



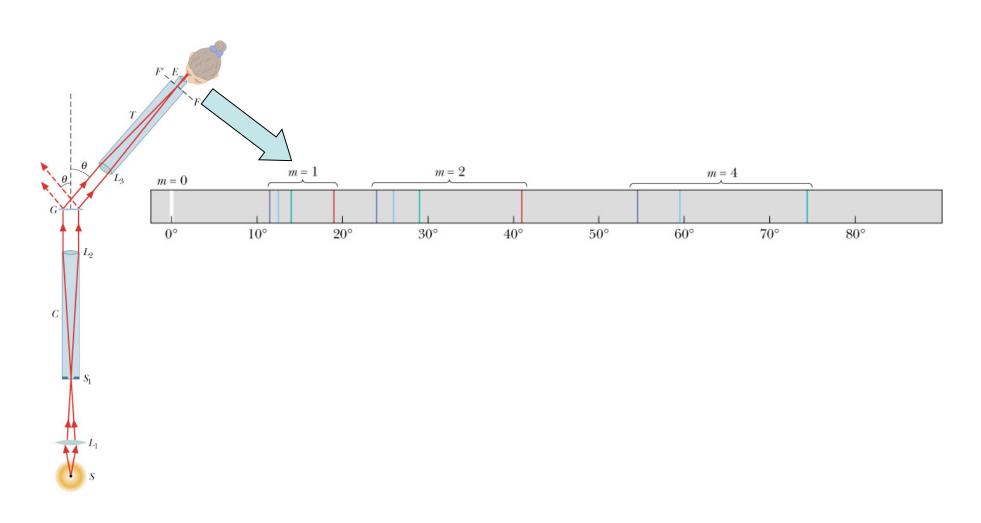
$$Nd\sin\Delta\theta_{\text{hw}} = \lambda$$
, $\sin\Delta\theta_{hw} \approx \Delta\theta_{hw}$

$$\Delta \theta_{\text{hw}} = \frac{\lambda}{Nd}$$
 (half width of central line)

$$\Delta\theta_{\text{hw}} = \frac{\lambda}{Nd\cos\theta} \text{ (half width of line at } \theta \text{)}$$

Grating Spectroscope

Separates different wavelengths (colors) of light into distinct diffraction lines



Summary

- To predict the interference pattern of a multi-slit system, we must combine interference and diffraction effects.
- Rayleigh's Criterion for separability of two points
- Intensity in single-slit diffraction:

$$I(\theta) = I_m \left(\frac{\sin \alpha}{\alpha}\right)^2$$
 where $\alpha = \frac{1}{2}\phi = \frac{\pi a}{\lambda}\sin \theta$ (36-6)

Double-slit diffraction:

$$I(\theta) = I_m \left(\cos^2 \beta\right) \left(\frac{\sin \alpha}{\alpha}\right)^2$$
 (double slit)