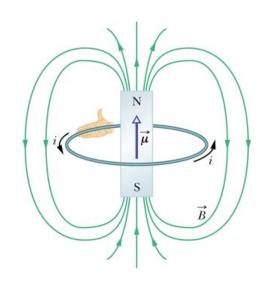


Physics 2102 Lecture 24 Ampere's law 2

Version: 03/13/2009

André Marie Ampère (1775 – 1836)



Review

- Wires carrying currents produce forces on each other: **parallel currents attract**, antiparallel currents repel
- Force between wires

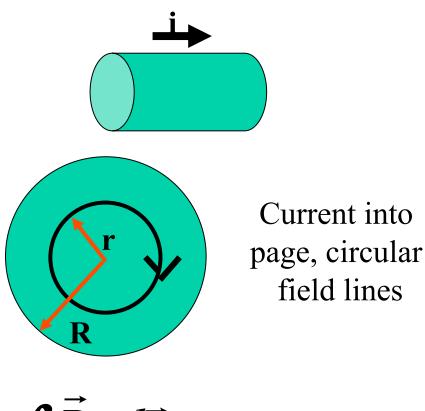
$$F_{21} = L I_2 B_1 = \frac{\mu_0 L I_1 I_2}{2\pi a}$$

• Ampere's law analog to Gauss' law for electric fields:

The line integral $\oint \vec{B} \cdot d\vec{s}$ of the magnetic field \vec{B} along any closed path is equal to the total current enclosed inside the path multiplied by μ_0 .

Ampere's Law: Example 2

- Infinitely long cylindrical wire of finite radius R carries a total current i with uniform current density
- Compute the magnetic field at a distance **r** from cylinder axis for:
 - r < a (inside the wire)
 - r > a (outside the wire)

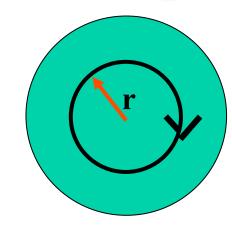


$$\oint_C \vec{B} \cdot d\vec{s} = \mu_0 i$$

Ampere's Law: Example 2 (cont)

$$\oint_C \vec{B} \cdot d\vec{s} = \mu_0 i$$

$$B(2\pi r) = \mu_0 i_{enclosed}$$



Current into page, field tangent to the closed amperian loop

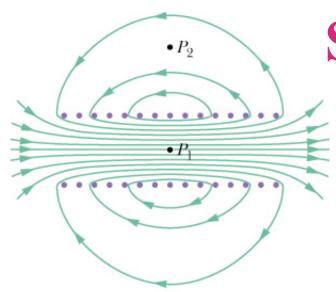
$$B = \frac{\mu_0 i_{enclosed}}{2\pi r}$$

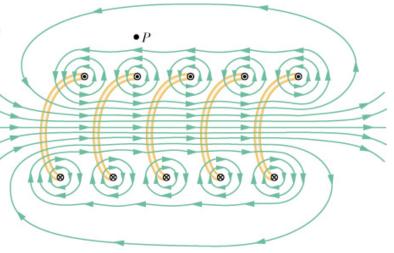
$$i_{enclosed} = J(\pi r^2) = \frac{i}{\pi R^2} \pi r^2 = i \frac{r^2}{R^2}$$

$$B = \frac{\mu_0 ir}{2\pi R^2}$$

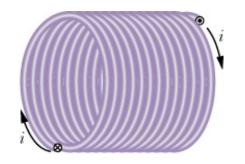
For
$$r < R$$

For
$$r > R$$
, $i_{enc} = i$, so $B = \mu_0 i / 2\pi R$

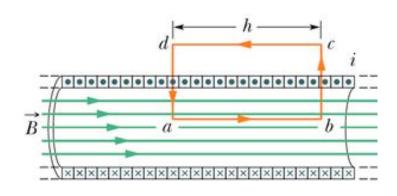




- Solenoid is tightly wound helical wire
- Coil length much larger than coil diameter
- Magnetic field in solenoid **uniform** and **parallel** to axis
- Outside away from ends **B** almost zero
- Sense of **B**: curl fingers from **right hand** along direction of current; thumb points along **B**



Magnetic Field of Solenoid



$$\oint \vec{B} \cdot d\vec{s} = \mu_0 i_{enc}$$

$$\oint \vec{B} \cdot d\vec{s} = 0 + Bh + 0 + 0$$

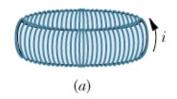
$$i_{enc} = iN_h = i(N/L)h = inh$$

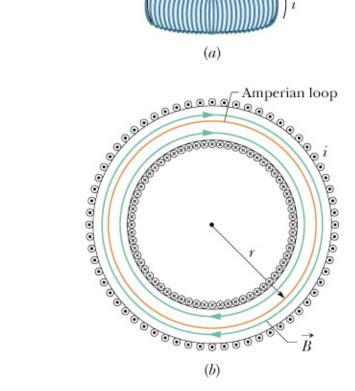
$$\oint \vec{B} \cdot d\vec{s} = \mu_0 i_{enc}$$

$$\Rightarrow Bh = \mu_0 inh \Rightarrow B = \mu_0 in$$

- B from Ampere's law
- n number of turns per unit length
- Outside solenoid and perpendicular to its axis $\mathbf{B} d\mathbf{s} = \mathbf{0}$
- Magnetic field **independent** of the solenoid's radius

Magnetic Field of Toroid





- Magnetic field in circles concentric with toroid's center
- Sense of **B**: curl fingers from **right hand** along direction of current; thumb points along **B**
- Magnetic field outside toroid almost zero

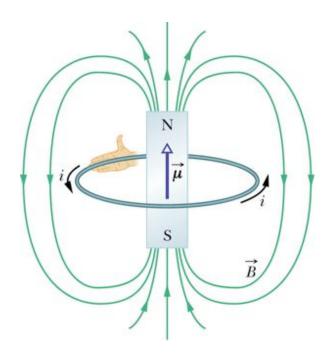
$$\oint \vec{B} \cdot d\vec{s} = B \oint ds = \mu_0 i_{enc}$$

$$\Rightarrow 2\pi r B = \mu_0 N i$$

$$\Rightarrow B = \frac{\mu_0 N i}{2\pi r}$$

Magnetic Field of a Magnetic Dipole

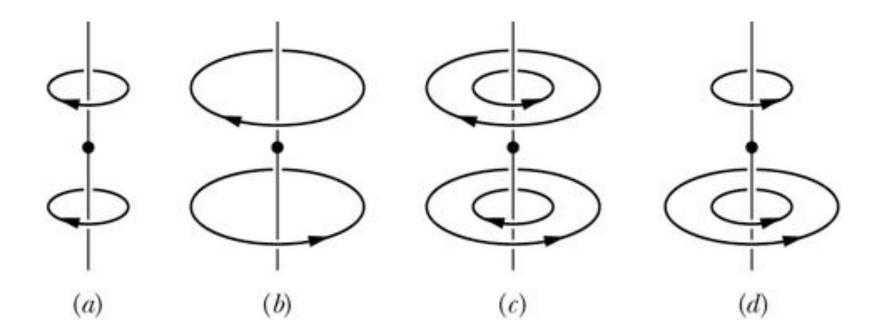
- Circular loop with electrical current is a magnetic dipole
- Magnetic dipole moment of magnitude $\mu = NiA$
- Dipole moment points in **South-North** direction
- Sense of **B**: curl fingers from **right hand** along direction of current; thumb points along **B**



$$\vec{B}(z) = \frac{\mu_0}{2\pi} \frac{\vec{\mu}}{(R^2 + z^2)^{3/2}} \approx \frac{\mu_0}{2\pi} \frac{\vec{\mu}}{z^3}$$

Example

- All loops in the figure have radius r or 2r
- Which of these arrangements produce the **largest magnetic field** at the point indicated?



Summary

• Inside a wire with uniform current density:

$$B = \frac{\mu_0 i r}{2\pi R^2}$$

- Solenoid is tightly wound helical wire $B = \mu_0 ni$
- Toroid is a doughnut shaped coil

$$B = \frac{\mu_o N i}{2\pi r}$$

• Magnetic field of circular loop is a magnetic dipole

$$\vec{B}(z) = \frac{\mu_0}{2\pi} \frac{\vec{\mu}}{(R^2 + z^2)^{3/2}} \approx \frac{\mu_0}{2\pi} \frac{\vec{\mu}}{z^3}$$

• Magnetic dipole moment of magnitude $\mu = NiA$